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ABSTRACT
Realistic Global Illumination is extremely costly. Video-games often
preferred to pre-compute it, sacrificing dynamic lighting or moving
geometry. However, more and more fully dynamic solutions are
emerging. In this article, I will discuss the state-of-art of Dynamic
Global Illumination methods that are used in video-games, giving
you a brief explanation of how they work and listing their pros and
cons.
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1 INTRODUCTION
Global illumination (GI) always has been a key part of rendering to
achieve realistic scene and it is no surprise that video-games are
always trying to improve it. GI is the combination of direct lighting,
light directly emitted from a surface or received by a light source,
and indirect lighting, light that is bouncing from surface to surface.
And indirect lighting is the main problem that we struggle to solve
in real-time to achieve good-looking GI.

1.1 The rendering equation

𝐿𝑜 (p, v) = 𝐿𝑒 (p, v) +
∫
l∈Ω

𝑓 (l, v)𝐿𝑖 (p, l) (n · l)+𝑑l (1)

The rendering equation (1)[6] has been proposed in 1986 by Kajiya.
The term 𝐿𝑜 (p, v) represents the outgoing radiance from the point
p in the direction v. In radiometry, the basic unit is the radiant
flux, which measures the energy over time, the power. Radiance
measures how much radiant flux there is on a surface, per area
and per steradian. Therefore, the radiance coming from the point
p following the direction v to a certain pixel of the screen will
represent how bright the pixel is. To compute correct GI, we need
to resolve this equation for every pixels. Most of the methods I will
discuss here propose their own way to solve it.

In the equation we add the emitted radiance 𝐿𝑒 (p, v) to the
integral of direction l over the hemisphere Ω centered around the
normal n where :

• 𝑓 (l, v) represents the BRDF (Bidirectional reflectance distri-
bution function) that tells us how light is reflected

• 𝐿𝑖 (p, l) is the incoming radiance from the direction l
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• (n · l)+ is the dot product clamp to positive values
The number of directions over the hemisphere is infinite. This is

what makes indirect lighting hard to compute. We have no choice
but to make approximations here.

1.2 Different ways to compute Global
Illumination

There are full solutions algorithms that compute real-life looking
lighting like path tracing [6] or photon mapping [5] . They can
compute even the most complex lighting effects like caustics and
easily handling both specular and diffuse materials. However those
are offline methods that are not usable for real-time application and
I won’t discuss them here.

I won’t talk about pre-computed solutions neither like light maps
[1] or Precomputed Radiance Transfert (PRT) [15] because they
restrict us to static lighting or geometry or both and cost a huge
production time by their needs to be pre-computed. Still, they are
often preferred by video-games because they doesn’t sacrifice per-
formance like dynamic GI could.

What I will discuss here are entirely fully dynamic GI methods
that allow us a total expression in our scene and immediate result.
However, they come at a cost. Trade-offs are often made, they are
more expensive and common problems like light leaking appear. It
won’t be an exhaustive list of every methods because certain are
not used anymore and also some of them are variation of those I
will present you.

2 SCREEN SPACE GLOBAL ILLUMINATION
Generally, the cost of GI increases with the complexity of the scene.
This is why Screen Space Global Illumination (SSGI) always has
been very popular among video-games. Non Screen Space methods
usually use massive amount of intersection tests, which requires
a lot of querying when dealing with large and detailed scenes.
Whereas Screen Space methods are bounded to the resolution of
the image, and therefore remain very affordable.

2.1 Screen Space Ambient Occlusion
One of the very first GI effect computed in Screen Space is am-
bient occlusion. It is a non-realistic but plausible effect based on
the observation that a point will receive more of less lighting if
accessible.

𝑘𝐴 (p) =
1
𝜋

∫
𝑙 ∈Ω

𝑣 (p, l) (n · l)+𝑑l (2)

𝑘𝐴 is the occlusion factor that will tells us how much the point p is
occluded. To compute it, we have to ingrate over a set of direction
l where :
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Figure 1: SSAO Crytek’s method

• 𝑣 (p, l) is the visibility function
• (n · l)+ is the dot product clamp to positive values

Various ways exist to compute the visibility function. Crytek
came upwith simple solution in screen space that produces pleasing
result and is computationally cheap [12]. They sample a point in
a sphere around the point p, and then compare its depth with the
depth buffer to determine whether or not the point is occluded. Over
the years, other methods have been proposed like Horizon Based
Ambient Occlusion that produces more accurate and pleasing result.
However they all shared the same limitations, they are limited to
the screen information, thus producing only approximations. They
are also not real GI, but only an effect of it.

2.2 Screen Space Directional Occlusion
Screen Space Ambient Occlusion (SSAO) doesn’t take into account
the incoming light and is only adding plausible details to shadow.
We can make a slight improvement to the algorithm so it can pro-
duce color bleeding, directed shadow and even one bounce of global
illumination. Screen Space Directional Occlusion (SSDO) [14] does
two things more than Crytek’s method.

First for every sample points considered as non-occluded, it ac-
cumulates radiance coming from the direction of the sample point
to p. It gives us oriented and colored shadows. Then for every sam-
ple points considered as occluded, they find the point above them
that occlude them and compute its reflected radiance from direct
lighting to the point p which give us color bleeding but also one
bounce of global illumination.

SSDO is a simple and cheap way to compute SSGI. There are
more implementation that can give better result at a higher cost
using ray marching against the depth buffer for example. Screen
Space Reflections (SSR) are also very popular because its provides
nice glossy reflection without ray-tracing.

However screen space methods have their downsides too. Be-
cause they are limited to our screen information, it may produce
inaccurate results if the occluder appears to be off-screen. Espe-
cially for Crytek’s method, if an occluder appears to be between
the point we shade and our sample point, it won’t be take the oc-
clusion into account. It could be solved by using ray-marching or

depth peeling but then the computational cost would tremendously
increases. Temporal artefacts may also appear, color bleeding and
glossy reflection can disappear when moving the camera. Most of
the time SSGI is added on top of others GI solutions to add details
at lower cost.

3 LIGHT PROPAGATION VOLUMES
Light Propagation Volumes (LPVs) are a solution initially proposed
for CryEngine 3 by Kaplanyan[7] in 2009. It can be considered as the
evolution of older methods. Virtual Point Light (VPL) which were
first introduced with Instant Radiosity [9] and Reflective Shadow
Map (RSM) [2].

The idea here is to simulate the light propagating through a grid
that discretizes the scene which is stored into a low-resolution vol-
ume texture. The grid moves with the camera, it is a local solution.
Each cell stores the incoming radiance, to do so they use spherical
harmonics functions that allows them to store it from different
directions.

After constructing the grid, they inject light into cells by using
RSM. RSM are similar to shadow map. We render the scene from
the light, but instead of only storing the depth like we would with
shadow map, we also store position, albedo, and normal. After-
wards, those information would normally be used to directly light
up the scene with one bounce of indirect lighting. Inspired by Splat-
ting Indirect Illumination technique [3] here they use a subset of
RSM pixels as VPLs. VPLs are basically point light created on the
fly. However, shading points with VPLs quickly become expensive
as their number increases. With LPVs, each VPL sees their radiance
information stored into its appropriate cells of the grid.

The next step is to propagate light throughout the grid. It is an
iterative step where at each step, cells propagate light to adjacent
cells in the 6 axial-directions. Afterwards, we can shade the scene
by using the radiance stored in the grid. However occlusion is not
taken into account yet. A very similar process is done in parallel to
calculate an occlusion factor into a geometry volume.

This method provide plausible dynamic GI achievable in real-
time that can compute multi-bounce by modifying the propagation
function and blurry glossy reflection by gathering the light through
the grid in a certain direction. A cascaded version of this method
has been proposed [8] for larger environment when the grid is too
small to cover all the viewed scene, initially they used SSDO on top
of it. Still, this method is limited by the resolution of the grid. Coarse
representation of the scene limit us to low-frequency lighting and
causes light leaking which were at the time acceptable issues to
achieve dynamic GI. Nowadays this method tends to be left-a-side,
others methods like Voxel Global Illumination are preferred.

4 VOXEL GLOBAL ILLUMINATION
Proposed by NVIDIA in 2011, Voxel Global Illumination (VXGI) has
only been recently used in video-games. Initially too expensive, the
method has been continuously improved by NVIDIA over the years.
Their latest work is available as a plugin for Unreal Engine and
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CryEngine also have their own implementation for their current
dynamic GI solution.

The approach is to build a pre-filtered hierarchical voxel repre-
sentation of the scene geometry in away that allows an approximate
voxel cone tracing method. NVIDIA initially used a sparse voxel
octree but decided some years later to switch to a clip map [13]
that allows smarter reconstruction when dealing with dynamic
objects. To voxelize the scene, they rasterize meshes 3 times along
the axis-coordinates in a resolution of the maximum size of the
clip map. Each voxel contains textures that represent opacity and
emittance values, their number may vary depending on the quality
targetted. Those textures are computed rapidly after the construc-
tion or the update of the clip map. Afterwards, they inject light into
voxels by using RSM and then perform approximate voxel cone
tracing at every visible points by stepping along their hierarchical
representation to accumulate illumination.

VXGI has the advantage to easily handle diffuse and specular
surfaces by respectively tracing cone in every directions or just
one. Area light are also easily implemented as emissive surfaces are
handle during the process. This method can also compute a high
quality ambient occlusion just by accumulating opacity during the
tracing process.

Its main downsides are due to its coarse representation of the
scene, flickering in the lighting can be observed on moving objects,
additional filtering has to be done to mitigate the effect. Also light
leaking and pixelated reflections can appear in some situation. It is
due to a lack of precision during the cone tracing process. Reflection
can be fixed with some filtering, however light leaking can only
be prevent by thickening walls which can be annoying in some
well-established scenes.

5 RTX GLOBAL ILLUMINATION
As NVIDIA’s RTX graphics card came out in 2018, it became pos-
sible to achieve real-time performance with ray-traced global il-
lumination. They have dedicated cores that greatly speed up the
ray-tracing process. Along with these, Microsoft collaborated with
NVDIA to propose DirectX Raytracing (DXR), an addition to the
DirectX 12 API that was made to speed up ray-tracing too. Right
now, it is still an early technology and a lot of work can still be
done with as we will see in the next methods I will present you.
Though even after speeding up by a lot the ray-tracing process,
path tracing[6] is still way too expensive for real-time performance.
We must use a much smaller set of rays although we are trying
to obtain similar diffuse and specular GI. Here I will talk about
how the Metro Exodus team used DXR and RTX to achieve their
dynamic GI. [18]

To start, they cache Ray-traced information like color and hit
distance into a light buffer. To do so, they first trace in screen space
by using ray-marching and if a ray miss, they trace rays in a direc-
tion sample uniformly from a hemisphere above the point oriented
with the normal. To choose those rays, they are using a procedural

blue noise, that is then reuse later to re-construct rays and accumu-
late lighting into sphericals harmonics. They produce better result
when filtered during the denoising step and gives us directional
information that will help to compute specular lighting.

It is important to note that DXR use accelerated structures. We
have Bottom-Level Accelerated Structure (BLAS) that will contains
the meshes we will trace against, and Top-Level Accelerated Struc-
ture (TLAS) that contains the BLAS. The Metro Exodus team choose
to rebuild only BLAS for animated or skinned meshes and they do it
across multiple frames to mitigate performance cost. The geometry
that they contains are about four times smaller than the original
ones to reduce memory cost and ease up the intersection tests.
TLAS, on the other side, are always rebuilt from scratch, to assure
the best quality and compactness. Culling is apply to most of the
BLAS contain in the TLAS by using logical visibility, reducing by a
huge amount the geometry tested.

The next step is probably the most important. The light infor-
mation obtained is way too noisy due to the lack of rays count. To
overcome this, they use a denoiser. We could use deep learning
to do so but this solution is barely explored in real-time graphics
application so they preferred to use a convolution method, which
is a mathematical tool that can be used to reconstruct signals. If the
image is still noisy, Temporal Anti-Aliasing can give us the extra
filter that we are looking for.

We obtain a dynamic lighting with affordable performance that
can provides at least one bounce of indirect illumination, color
bleeding and specular. Additionally to GI, depth information ob-
tained during the ray trace process can give us ambient occlusion
information. Compare to SSAO this Ray-trace ambient occlusion
(RTAO) is much more aware of enclosure spaces and gives us pro-
gressive darkening interior. The main issue of this RTX Global
Illumination however, is that computing multi-bounce illumination
is extremely expensive due to the exponential number of rays added.
One bounce is enough to provide good-looking GI is most cases
but interiors can suffer from it if no direct light source is present.

6 IRRADIANCE FIELDS
Initially irradiance probes are a pre-computed solution that allows
us to compute lighting information into probes that is distributed
all over the scene. Objects then dynamically interpolate lighting
information with the closest probes. This allows dynamic geometry
but restrict us to static lighting. Another issue can be observedwhen
probes are close or inside geometry. It can cause bad interpolation
on the geometry that will result as light or shadow leaking. In 2019,
NVIDIA delivers a paper that aim to resolve those two issues with
the use of RTX [11]. Inspired by this paper, a solution has also been
proposed with the use of Signed Distance Field [4] (SDF) that I will
discuss afterwards.

6.1 RTX method
They start by setting up a uniform three dimensional grid of probes.
They allow artists to manually move them for better result, though
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they can avoid most of light leaking without moving them. A cas-
caded version of this grid is made in the same way as we saw with
LPVs to save performance in larger scenes. Each probe stores light-
ing information into octahedron. They naturally unwraps to a cube
so we can use textures. Those textures store irradiance and visibility
information. To compute them they trace a set of rays around the
probes that will gather information for them. Irradiance is averaged
into 6 texels representing the 6 directions of the octahedron.

However, it is not that easy with the visibility. By storing the
mean of ray length hit in a certain direction, we may miss a small
aperture in a wall for example. What they do, is that they store the
sum of the ray length but also the sum of the squared ray length.
It allows calculation to detect variance and correctly approximate
shading. Finally, during the shading process, we look for the eight
probes around the point we shade, and for each probes, we compare
its distance to the point and its visibility to decide how much of
its lighting information we should accumulate. Still, updating ev-
ery probes at each frame is extremely costly and not achievable in
real-time. What they do is that they update probes across multiple
frames at a variable frequency. They can sacrifice ray count and
frequency update to reduce and stabilize performance cost on the
fly.

This method can effectively produce dynamic diffuse GI with
multi-bounce at scalable performance with almost no light leaking.
I say almost because thin wall that are about 10 centimeters can still
produce light leaking due to depth precision issues. Speculars are
not supported although RTX can easily compute reflection on top of
it. High-frequency contact shadow are not very well described too
but using SSAO on top of it can do the trick. With those additions,
this method can match path tracing results.

6.2 Signed Distance Field method
Alternatively, another method proposed a similar approach using
SDF to get rid off hardware requirement and to totally eradicate
light leaking. To do so, they use a SDF primitives to discretize the
scene. Those primitives are packed into clusters to speed up SDF
query. At first, cluster are treated as one SDF and if they are not
rejected, its primitives are individually considered. Additionally,
because of the light weight of this data structure, work is done
to put them inside the L1 cache of the GPU and speed up access
memory, therefore reducing furthermore SDF query cost. The same
grid than before is set up, though if a probe falls inside an object,
they relocate it. Probes only store Irradiance, and to sample it, they
perform a set of sphere tracing from various direction to intersect
with the scene and then use RSM to get the Irradiance value at
those intersection points, therefore computing the first bounce of
indirect lighting. Multi-bounce is done through multiple frame by
interpolating probes between them. When shading a point, they
interpolate probes close to it. But before that, they perform visi-
bility tests against the SDF representation of the scene using ray
marching. This test is done only one times for every 2x2 set of pixels.

With this method, light leaking is totally gone and it has no
hardware requirement. However it is not production ready at all.

The SDF representation of the scene is set up manually for the
moment, which is a huge amount of work for large scenes. Though
they are looking for an automation of this process which can make
this method very promising.

7 LUMENS
With the release of the early access of Unreal Engine 5, came Lu-
mens [17]. It is a hybrid GI solution that provides support for non
ray-tracing and ray-tracing graphic card. The first one uses SDF
representation of the scene to trace against and surface caches to
rapidly query light information. The second one focus on smart
usage of ray tracing.

7.1 Software Ray-Tracing
For their first solution, they use three methods of ray-tracing. They
start with screen traces, and when the ray goes off screen, they
traces against pre-computed individual mesh SDF, however this
come at a cost. For further away rays they use a more global SDF
of the scene. Since Unreal Engine 4, the Mesh SDFs have been im-
proved in term of resolution and memory cost. However those SDF
only give us normal and hit point, but they don’t have any color or
lighting information attached to them. This is where Surface Cache
comes into place. It is a huge low resolution atlas that captures
meshes information from different direction which is updated in
real-time. However it has one big limitation which that meshes
can’t have complex interior. It is easy to understand why, complex
interior can’t be capture by just looking at the mesh from differ-
ent direction. It is important to know that this process was build
along side with Nanite, another new feature of Unreal Engine 5
that virtualize geometry. It speeds up by an tremendously amount
the surface cache process.

Lumens Software Ray-Tracing provides a dynamic GI solution
for non ray-tracings graphic cards with affordable performance on
high-end configuration. It supports diffuse and specular material. It
has some limitation though. It only apply on static meshes, which
are an Unreal Engine object that can’t have their vertices animated
in any ways, however they can move. Moreover large meshes will
have poor representation and have to be divide into smaller modular
pieces. Light leaking is also a problem for walls that are too thin.

7.2 Hardware Ray-Tracing
They were inspired by ray tracing methods . Limited by the amount
of ray count, image obtained are very noisy and need a denoiser
to be usable. Lumens tries to make better use of its low ray count.
They do not trace for every pixels of the screen, instead they do
what they call Screen Space Radiance Caching. They trace smaller
set of pixels. They start with a uniform grid distribution at every
16 pixels then double the resolution of the grid at points where
an interpolation test fails with adjacent points. This method has
been introduced at Siggraph in 2007[10]. As a result, the image is
down sample at 1/16𝑡ℎ of its initial resolution in the worst scenario.
Because they make the assumption that incoming light is coherent,
they consider this worse the trade. They also apply some jittering
to the grid between frames that will be temporally filtered to cover
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more pixels. Lighting details are coming from the normal of the
geometry, which will be used at full resolution and shaded with
the low-resolution incoming lighting. As a result the lighting is
already much more detailed than with classical ray-tracing. It is
worse to note that Nanite provides extremely high detailed normal
that Lumens can profit.

To continue to make better use of ray tracing, Lumens identifies
where rays should be fired in priority, such as light source or lit
surface. To do so, they re-project last frame lighting information
and BRDF then use a probability density function with both of these
to determine from where the incoming lighting should come. As a
reminder, BRDF is the function that computes the probability of the
light to be reflected. For more distant lighting that doesn’t appear
on screen, a World Space Radiance Caching is done. It places a few
probes in a grid in world space, and then traces from them. They
are in a much more smaller number that in Screen Space Radiance
Caching though. Their result is then interpolate to the rest of the
lighting information. To speed up Lumens tracing process, a Nanite
proxy representation of the mesh are used which are significantly
smaller than the full representation. Too cover the mismatch be-
tween the proxy and the full resolution mesh they trace against
the screen because what is seen is the full mesh representation.
Additionally to these, geometry is stored into a Bounding Volume
Hierarchy [16] (BVH) that is built once for static geometry and
rebuilt every frame for the rest. As a result we obtain good enough
lighting information that can be then interpolated to the rest of the
screen and temporally filtered to improve lighting stability.

Lumens Hardware Ray-Tracing provides a dynamic GI on ex-
tremely high detailed geometry thanks to Nanite with affordable
performance on high-end configuratio. It supports diffuse and spec-
ular material. However Lumens is still in early access, therefore its
implementation has still room for improvement. It is limited to 10
000 instances, suffers from huge performance cost with masked ma-
terial, skinned mesh and overlapping geometry and it also doesn’t
have support for transparency yet.

8 CONCLUSION
Dynamic Global Illumination in video-games has greatly been im-
proved during the last decade. As we saw, past methods tend to
continuously inspire other and evolve into more complex solution.
And with always more powerful hardware, new approaches always
become possible. At our best, we are currently capable to provide re-
sult that can match offline algorithms with only few trade off. Light
leaking is still a problem but has been greatly reduced in most of
cases. Dynamic Illumination is often compute over multiple frames,
as a result lighting effect present a bit of latency, and complex GI
effect such as caustics are still out of our hands. Latest solutions
tend to focus on Ray-tracing now that specialized graphics cards
came out, SDF also has been more and more used. For the future,
NVIDIA is talking about RTX servers that would stream GI informa-
tion directly to the player, it is the reason why they restricted their
data structure to small texture for their Irradience Fields method.
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