
Unity SRP for cartoon style rendering optimisations
Theo Lemoine

theo.lemoine0@gmail.com
CNAM-ENJMIN

France

Figure 1. Objects rendered with a Custom Render Pipeline.

Abstract
This article aims to show the benefits of using the Unity
SRP to build a custom rendering pipeline fitting specifically
the needs of a project, instead of relying on the given High
Definition and Universal Render Pipeline.

The goal of the project was to experiment with Unity SRP
technology and to create a pipeline optimised specifically
for cartoon style rendering.
I tried to achieve a cartoon-looking renderer with the

smallest performance cost possible with multiple techniques
such as material capture, Multiple Target Rendering, screen-
space edge detection or simply limiting lighting computa-
tions to one light to prevent inefficient loops in shader code.

CCS Concepts: •Computingmethodologies→Render-
ing.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CNAM-ENJMIN Experimentation Subject, July 2021, Angoulême, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Keywords: Unity, Scriptable Render Pipeline, Non Realistic
Rendering

ACM Reference Format:
Theo Lemoine. 2021. Unity SRP for cartoon style rendering opti-
misations. In Proceedings of CNAM-ENJMIN Experimentation Sub-
ject. Angoulême, France, 7 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
1.1 Motivation
Video games often use similar rendering techniques (PBR
shading, Shadow Casting, Post Processing, ...), especially
when the goal is photorealism.

The goal of game engines, such as Unity is to provide
standardised tools to use said techniques easily and create
the wanted look for your game. But this often means the
renderer is “one size fits all” and it’s hardly possible to opt-
out of some functionalities, or access low level code to add
your custom behaviour to the renderer.
Especially for low end devices such as smartphones, or

portable consoles like the switch, where hardware is not that
powerful, optimizing rendering is really important. As it’s
often one of the most costly parts of the game in terms of
performance. Building your own rendering code fitting the
specific need of the game is often way more efficient.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CNAM-ENJMIN Experimentation Subject, July 2021, Angoulême, France Theo Lemoine

The “new” Scriptable Render Pipeline aims to fix the prob-
lem by letting developers create their own render pipeline
and access low level rendering code to set up render passes,
handle GPU buffers, etc.

1.2 Problems with HDRP and URP
SRP comes with 2 standardised pipelines made and main-
tained by Unity : the High Definition Render Pipeline for
high performance, photorealistic games ; and the Universal
Render Pipeline, a more versatile, low end device friendly
pipeline.

But both pipelines make it really hard to access rendering
code. The shader graph, a visual tool to create shaders, is the
only way to have custom rendering behaviour and still has
no access to lighting computations or shadows.

1.3 Non realistic rendering in video games
Moreover, some game styles do not fit in the realistic shaders
and render processes given by the HDRP or the URP. It’s
often possible to work around and find solutions, but the
given render pipelines then becomes more of a burden than
a real help.

Figure 2. Ape out, renders all 3D geometry with an unlit
shader

Figure 3. The return of the Obra Dinn, 2 colors only, with
cell shading and edge detection

Figure 4. The unfinished swan, you paint you surroundings
by throwing paint

So I thought I would try to experiment what was possible
with a custom SRP in regards to this kind of non-realistic
rendering. What I was going for was a drawn comics-like
style, with flat colors, and strong edges.

2 Creating a new render pipeline
[2]

2.1 Introduction to Unity SRP
Unity Scriptable Render Pipeline allows developers to specify
the rendering process of the engine using C# code to schedule
draw calls, and handle GPU memory buffers through Render
Textures. Developers can also make their own shaders using
the SRP Shader Library, containing the base functions like
applying the Model View and Projection matrices given by
unity.

2.2 Creating a C# renderer
Creating a custom Scriptable Render Pipeline is done by
creating 2 C# classes : the RenderPipelineAsset, and the
RenderPipeline.

The RenderPipelineAssetworks in a way close to script-
able objects, Unity makes it possible to instantiate the class
as an asset in the editor and you can define members of the
class that appear in the inspector just as MonoBehaviours.
Data in the asset is then used (if needed) to construct a

RenderPipeline instance when the game runs. The Render-
Pipeline can then schedule draw calls to the GPU, allocate
render targets, and pass data globally to shaders.
This is done using both the ScriptableRenderContext

and CommandBuffers.
The ScriptableRenderContext class acts like a bridge

between our C# render pipeline code and the low level C++
code Unity uses for rendering. It allows us to do culling, draw
the skybox, the geometry of the scene, etc.

CommandBuffers are objects containing multiple instruc-
tions to be made by the GPU. The rendering code is not
directly run from the C# side, we fill a buffer with a list of

Unity SRP for cartoon style rendering optimisations CNAM-ENJMIN Experimentation Subject, July 2021, Angoulême, France

instructions, and ask the ScriptableRenderContext to ex-
ecute them all at once. CommandBuffers are used for things
like allocating render targets, clearing them, setting the ren-
der target to be rendered to, or sending global data to shaders.

2.3 Using Unity SRP tools and Shader library to
build custom shaders

Writing a custom shader for a render pipeline is made easier
thanks to the SRP Shader Library. It allows access to utility
functions to transform vertex from object space to World,
View, and Clip space, or to transform normals from object
to world space.

To render our shader properlywe need to define a LightMode
both in the C# and the shader passes. The LightMode is a
keyword for shaders defining on what type of pass they be-
long : is this pass for shadow casting, depth check or final
mesh rendering ? Once the keyword is defined, on the C#
side, we can decide which type of LightModewill be allowed
when we render our geometry. This allows the C# part to
set up the right shader properties and render targets when
running a specific part of the pipeline.

In the shader :

Shader "CRP / Un l i t / Matcap " {
P r o p e r t i e s {

. . .
}
SubShader {

Pas s {
Tags { " LightMode " = " CRPUnl i t " }
. . .

}
}

}

In the C# renderer :

ShaderTag Id Un l i t P a s s I d =
new ShaderTag Id (" CRPUnl i t ") ;

var d r aw i ng S e t t i n g s =
new Draw ingSe t t i ng s (

Un l i t P a s s I d ,
. . .

) ;

Apart from this this is just like a standard unity shader
with a vertex and fragment core.

The SRP allows developers to access most of the render-
ing process of the unity engine, while giving useful tools for
developers to create their own rendering pipeline. This al-
lows for a lot of optimisations, especially for games who aim
for really specific, and non-realistic visuals. Now that I’ve
explained how creating a custom SRP works, I’ll be diving
into some techniques I tried, to create a drawn comics-style
rendering.

3 Techniques for non realistic rendering
3.1 Using Material capture to fake lighting with

unlit shaders
[3]
The first thing was to try to create efficient and good

looking unlit materials using the material capture (MatCap)
technique.

MatCap is a technique used to get a non-realistic imitation
of a material at a really low performance cost. Usually a
sphere is rendered with the original material with a given
lighting and reflection setup. The image of the sphere is then
saved as a small texture (usually 512*512).
When rendering, the shader will use the normals of the

model, convert them into view-space, keep only the X and
Y part of the vector, and remap them from -1,1 to 0,1. This
vector is then used as UV coordinates to sample the sphere
texture.

In the end, the sphere is used as a lookup texture to “what
is the color of the material at this angle from the camera”.
Of course, the technique is only an approximation of the
base material (see fig.5), but works really well to believably
simulate metallic reflections on an object at a really low cost
in performance.

Figure 5.MatCap technique applied to a mesh

This technique was even used in Mario 64 to create the
metal-Mario effect. Simulating metallic reflections on the
mesh.
Although the sphere texture is usually the capture of a

real material in a 3D engine, it can also be manually edited
to create the wanted effect on the final object. The sphere
texture can be drawn by an artist on a 2D software, to create
the look of a drawn or comics-style material.

CNAM-ENJMIN Experimentation Subject, July 2021, Angoulême, France Theo Lemoine

Figure 6. MatCap used for metal Mario in Mario 64

Figure 7. Examples of drawn MatCap texture, imitating
painted or drawn shaders

This allows to replicate a drawn-comics style with no light
calculations whatsoever. The cost of such a shader is really
low and can be used to get a good looking effect on really
low-end devices, or in performance heavy contexts, such as
particle system shading, where light calculations would be
too heavy.
Combined with color and normal texture mapping, this

technique can be used to simulate complex lighting and
reflections without the need of any light computations.

However, this effect can look strange if the camera angle
changes a lot, as it becomes clear the lighting is fake. So
MatCap is better applied to games with a fixed camera angle
such as the top view of RTS or MOBA games.

3.2 Lit shading with only one light
For games with a fast moving camera, such as FPS or TPS, it
is better to have consistent lighting. However, for cartoon

aesthetics, one directional light is often enough to get a good
lighting effect using cell shading.

Unity allows to get the strongest light in the current scene
as RenderSettings.sun, its direction can then be transmit-
ted to all shaders as a float3. To create a cell shading effect,
we only need the direction of the light, the color of the object
and it’s shadow will be set on the material.
On the shader side we simply need to compute the dot

product between the normal and the direction of the light.
This dot product ranges from 1 to -1, 1 is fully lit and from
0 is in shadow. Standard cell shading would apply uniform
shadowing only from 0, instead of using the dot product as
a gradient.

Figure 8. Standard Cell shading

To make a multiple step cell shading as we want to, we
need to define the number of steps, and the size of a step. We
take the values of the dot product from 0 to -1, negate them,
and divide by the size of a step. the integer part gives us
the step we are on, minus one, so we just ceil() the value.
After we divide by the total number of steps to get the value
of the shadow at the current step between 0 and 1.

Figure 9. Cell shading with 3 (left) and 6 (right) steps

Unity SRP for cartoon style rendering optimisations CNAM-ENJMIN Experimentation Subject, July 2021, Angoulême, France

Having full control on the pipeline allows us to limit light
computation to just what we need, hence optimizing the
shader code, especially since we have only one light, we get
rid of any loops that might slow down rendering.

3.3 Line rendering with edge detection
An important part of the drawn comics-style is the lines. I
tried to achieve this effect through screen-space edge detec-
tion, using the sobel filter.

But instead of detecting edges on the color of the rendered
scene, I wanted to run the filter on the depth and normals.
So I needed access to multiple buffers containing the needed
information. [1]

3.3.1 MRT - Multiple render textures. The goal was to
create a rendering process inspired from deferred rendering
: Surfaces would be rendered in a forward-rendering way,
and edges would be rendered in deferred, just like a post
processing effect.
In deferred rendering, the geometry of the scene : color,

normals, and other information, is rendered in separate
buffers called the geometry buffer. My first idea to do this
was to run multiple passes to gather wanted information.
But I learned that one shader pass could render into multiple
frame buffers, what is called MRT : Multiple Render Target.
On the shader side, we need to define a structure for the

output of the fragment shader, just like we usually do with
the vertex shader. Each member of the struct has a semantic,
like COLOR1 or COLOR2, indicating which render target the
data is meant to be written to.

s t ruc t P i x e l s
{

f l o a t 3 c o l o r : COLOR0 ;
f l o a t 3 normals : COLOR1 ;
f l o a t 4 bo rde rCo lo r : COLOR2 ;

} ;

On the C# side, we need to allocate temporary render
textures for each type of data we need out of the shader, And
assign them all to be rendered at the same time with the
RenderTargetBinding class.

/ / s e tup RTs to be rende red to
R e n d e r T a r g e t I d e n t i f i e r [] t a r g e t s = {

ColorRT ,
NormalsRT ,
BorderColorRT

} ;
Rende rBu f f e rLoadAc t i on [] l o a dAc t i on s = {

Rende rBu f f e rLoadAc t i on . DontCare ,
Rende rBu f f e rLoadAc t i on . DontCare ,
Rende rBu f f e rLoadAc t i on . DontCare

} ;
R end e rBu f f e r S t o r eAc t i on [] s t o r eA c t i o n s = {

R end e rBu f f e r S t o r eAc t i on . S to re ,
R end e rBu f f e r S t o r eAc t i on . S to re ,
R end e rBu f f e r S t o r eAc t i on . S t o r e

} ;
var r t B i n d i n g = new Rende rTa rge tB ind ing (

t a r g e t s , l o adAc t i on s , s t o r eAc t i o n s ,
DepthRT ,
Rende rBu f f e rLoadAc t i on . DontCare ,
R end e rBu f f e r S t o r eAc t i on . S t o r e

) ;

_ b u f f e r . S e tRende rTa rge t (r t B i n d i n g) ;

Figure 10. Color, Depth And Normals rendered at the same
time

3.3.2 Blit to the screen. Now that the geometry is ren-
dered to a buffer, nothing is rendered to the screen. We need
to use the Blit() function to render directly to the screen.
Blit works by feeding a few vertices to the screen and letting
the vertex shader create a quad or a triangle covering the
screen without the need for MVP matrixes. The shader also
computes the UV for each point and sends it to the fragment
shader where we can truly create our screen space effects.

Vary ings S c r e enVe r t ex (A t t r i b u t e s i npu t)
{

Vary ings ou tpu t ;
ou tpu t . p o s i t i onCS =

Ge tQuadVer t exPos i t i on (i npu t . v e r t e x ID) ;
ou tpu t . p o s i t i onCS . xy =

ou tpu t . p o s i t i onCS . xy ∗ 2 − 1 ;
ou tpu t . t e x coo rd =

GetQuadTexCoord (i npu t . v e r t e x ID) ;
r e t u r n ou tpu t ;

}

3.3.3 Line detection with sobel filter. After setting all
the textures for our blit shaderwith C# code, we need to apply
a sobel filter to the depth and normal buffers. The sobel filter
works by combining the results of two convolution matrices
applied to the image.
A convolution matrix is a 3*3 matrix used to modify an

image. Considering the current pixel is at the center of the
matrix, and the other values are the surrounding pixels, the

CNAM-ENJMIN Experimentation Subject, July 2021, Angoulême, France Theo Lemoine

new value of the pixel is the sum of all the pixels multiplied
by the corresponding coefficient in the matrix.

𝑆𝑦 =
©«
1 2 1
0 0 0
−1 −2 −1

ª®¬ 𝑆𝑥 =
©«
−1 0 1
−2 0 2
−1 0 1

ª®¬
After applying the 2 matrices, we can see the results as

how much of an horizontal edge there is, and how much of a
vertical edge there is. The final value of the edge is computed
as the length of a vector containing the two values.

Figure 11. Results of the sobel filter on depth (left) and
normals (rigth)

Afterwards we transform it to a boolean value : if the value
goes above a certain threshold, there is an edge, else, there
is none.

3.3.4 Adding border color andno border. Wemaywant
to customize the color of the border, and if we want one or
not, for each object on the scene.
The solution is to add another RGBA buffer, filled while

rendering geometry by the wanted border color for the mesh.

Figure 12. Contents of the border color buffer

Before applying the edge to the final image, we color it
with the border color buffer. Any mesh who does not want
borders makes it fully transparent, this way we can make
borders appear and disappear at runtime.
Using the SRP to create this effect made possible a lot

of optimisation, especially with the MRT part, that would

Figure 13. Sobel results combined with the border color
buffer

Figure 14. Final result

not be available using the URP, HDRP, or even the legacy
built-in render pipeline. By writing custom shaders for the
pipeline, I was able to merge a lot of GPU processing in the
same rendering pass.

4 Conclusion
Creating a custom Scriptable Rendering Pipeline was a good
experience, as it allowedme to get amuch deeper understand-
ing of how Unity handles rendering with the new render
pipelines. It alsomademe discover new optimised techniques
for rendering that I could leverage for future games.
In terms of performance, creating your own pipeline for

your game may be really worth the time : Even in a scene
with a few objects, my custom render pipeline (>300fps) per-
forms way better than either URP(200fps) or HDRP(120fps)
on an empty scene. (measures taken on the same computer)

For games with really specific needs in terms of rendering,
that be performance, of specific art style, creating a custom

Unity SRP for cartoon style rendering optimisations CNAM-ENJMIN Experimentation Subject, July 2021, Angoulême, France

Figure 15. FPS Comparison in editor

SRP could be a great way to get creative and experiment
with rendering techniques, while still having access to all
other functionalities of the Unity engine.

References
[1] Simon M. Danner and Christoph J. Winklhofer. [n.d.]. Cartoon Style

Rendering. Retrieved June 21, 2021 from https://www.cg.tuwien.ac.at/
courses/Seminar/WS2007/comicstyle.pdf

[2] Jasper Flick. [n.d.]. Unity Custom SRP Tutorials. Retrieved June 21, 2021
from https://catlikecoding.com/unity/tutorials/custom-srp/

[3] Henning Steinbock. 2019. Custom SRP and graphics workflows | Battle
Planet - Judgement Day - Unite Copenhagen 2019. Retrieved June 21,
2021 from https://www.youtube.com/watch?v=91zUwJwkXNQ

A Online Resources
Images from the games :

• Ape out : https://store.steampowered.com/app/447150/
APE_OUT/

• The return of theObraDin : https://store.steampowered.
com/app/653530/Return_of_the_Obra_Dinn/

• The unfinished swan : https://store.steampowered.com/
app/1206430/The_Unfinished_Swan/

• Mario 64Wiki (https://sm64-conspiracies.fandom.com/
wiki/Metal_Mario)

Unity and Unity SRP documentation :
• Unity : https://docs.unity3d.com/Manual/index.html
• SRP Core package : https://docs.unity3d.com/Manual/
index.html

Github repo of the project : https://github.com/TheoLemoine/
CartoonRenderPipeline

https://www.cg.tuwien.ac.at/courses/Seminar/WS2007/comicstyle.pdf
https://www.cg.tuwien.ac.at/courses/Seminar/WS2007/comicstyle.pdf
https://catlikecoding.com/unity/tutorials/custom-srp/
https://www.youtube.com/watch?v=91zUwJwkXNQ
https://store.steampowered.com/app/447150/APE_OUT/
https://store.steampowered.com/app/447150/APE_OUT/
https://store.steampowered.com/app/653530/Return_of_the_Obra_Dinn/
https://store.steampowered.com/app/653530/Return_of_the_Obra_Dinn/
https://store.steampowered.com/app/1206430/The_Unfinished_Swan/
https://store.steampowered.com/app/1206430/The_Unfinished_Swan/
https://sm64-conspiracies.fandom.com/wiki/Metal_Mario
https://sm64-conspiracies.fandom.com/wiki/Metal_Mario
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://github.com/TheoLemoine/CartoonRenderPipeline
https://github.com/TheoLemoine/CartoonRenderPipeline

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problems with HDRP and URP
	1.3 Non realistic rendering in video games

	2 Creating a new render pipeline
	2.1 Introduction to Unity SRP
	2.2 Creating a C# renderer
	2.3 Using Unity SRP tools and Shader library to build custom shaders

	3 Techniques for non realistic rendering
	3.1 Using Material capture to fake lighting with unlit shaders
	3.2 Lit shading with only one light
	3.3 Line rendering with edge detection

	4 Conclusion
	References
	A Online Resources

