
Unreal Engine’s Gameplay Ability System, from programming
framework to designer’s tool

Guillaume David
gjd.david@gmail.com

CNAM-ENJMIN
Angoulême, France

Figure 1: Melee attack Gameplay Ability in the Action RPG sample project

ABSTRACT
In this article I investigate how Unreal Engine’s Gameplay Ability
System plugin works and what steps should be taken in order to
make it usable by Game Designers in a team project. I will go from
a general overview of the System’s architecture to thoughts about
how specific game mechanics could be implemented with it.

CCS CONCEPTS
• Software and its engineering→ Interactive games.

KEYWORDS
Unreal Engine
ACM Reference Format:
Guillaume David . 2021. Unreal Engine’s Gameplay Ability System, from
programming framework to designer’s tool. In ,. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
While readily-available game engines like Unity and Unreal Engine
come with extensive tool sets that cover the most common needs
of game developers, they can’t provide for the very specific needs
of such a diverse industry and even small-scale projects like stu-
dents games can benefit from building custom tools. Games like
MMORPGs and MOBAs typically have a large number of charac-
ter abilities like skills and spells so building a custom editor and
underlying framework makes sense and allows game designers to
iterate quickly and be more independent from the programmers
while designing such abilities [1]. Unreal Engine 4 (UE4) aims to

,
2021. https://doi.org/10.1145/nnnnnnn.nnnnnnn

provide such a framework with the Gameplay Ability System (GAS),
although it is hardly usable as is and needs to be tailored to each
project’s specific usage. This article will give a tour of the GAS’s
architecture and investigate the steps needed in order to turn it
into a tool for game designers.

1.1 For Whom: Relevant Team Roles
Aside from hobby projects and a select few professional solo devel-
opers, making video games is a team effort and makes use of very
different skills. Of these different fields of expertise, the relationship
between game designers and programmers is of particular interest
to this article. Although the specifics differ from studio to studio,
the following roles usually exist in some form and perform at the
interface between the fields of programming and game design:

• Gameplay Programmers translate the game designers’ rules
and mechanics into code

• Tool Programmers provide tools for other team members’ use
• Technical Game Designers are the interface on the design
side and are familiar with the technical implications of each
game design decision

The subject of this article sits at the intersection of these three
disciplines and should be of interest to all of these roles.

1.2 For What: Game Genres and Use Cases
I originally began my reflection about what I would call evolving
systemic games, games like League of Legends or Magic the Gather-
ing which have an ever increasing (from new content being released
regularly) number of abilities, effects and conditions that can inter-
act with one another. It obviously makes perfect sense to have a
dedicated tool for designing abilities when developing such a game,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


, Guillaume David

it would also make sense to use it in games with a large, albeit fixed,
number of abilities such as role playing or strategy games.

Then I read about UE4’s GAS and found out that any game could
use it extensively. Basically anything that can happen in a game can
be implemented using GAS, although maybe not everything should.
It maymake sense tomake a character’s jump be a Gameplay Ability
if we want to be able to give it a different jumping mechanics like
a double-jump, likewise a sprint action that depletes a stamina
attribute makes a good candidate for a Gameplay Ability. Item use,
power-ups, different weapons are almost as obvious use cases as
RPG spell casting. The system is designed for gameplay though
so things like UI interaction may be better implemented in other
ways.

2 GAS BASICS
The Gameplay Ability System was originally developed for Epic
Game’s Paragon and is in use in their highly successful game Fort-
nite, both of which are online multiplayer games. The GAS is indeed
designed to handle network replication of Ability use and Effects,
this has implications in the system’s architecture and in the work
needed to make use of it in such a context. The GAS can of course be
used in an offline or single-player environment and, as my interest
lies in the designer-facing part of the system, I will not concern
myself with its networking capabilities and simply trust that they
will not hinder any attempt to build a designer-friendly layer on
top of it.

Official documentation[4] of the GAS is fairly recent and is pre-
dated by several unofficial sources in the form of tutorials, wiki
articles and Dan Kestranek’s documentation effort on GitHub [6].
These different unofficial sources[6][7] contain different informa-
tion pertaining to their author’s specific interests while the official
documentation is little more than an introduction. All of these
sources also seem to make assumptions about what kind of game
is being made and I found all of them unsatisfying to some degree.
On the other hand, gaining a deeper understanding of the GAS by
reading the source code is a daunting task for someone who is not
familiar with Unreal’s inner workings. In my experiments I feel like
I barely scratched the surface.

Producing a comprehensive documentation of the Gameplay
Ability System is well out of the scope of this work so I will only
summarize the various concepts and classes involved in this system.
A rather restrictive summary of the relationships between these
elements goes as follow:

Gameplay Abilities run Ability Tasks and apply Gameplay Effects
which in turn can modify Attributes and Gameplay Tags.

2.1 Gameplay Tags
While not strictly speaking part of the GAS, Gameplay Tags are
tightly integrated in it. According to Unreal Engine’s documentation

Gameplay Tags are conceptual, hierarchical labels
with user-defined names.[5]

The GAS uses Gameplay Tags as conditions: Effects or Abilities can
be blocked based on their tags, or have tag requirements. The hier-
archical capability of Gameplay Tags can be very useful for subcate-
gories, so that a damage effectwith the tag damagetype.magic.fire
would be recognized as an effect with damagetype.magic.

Figure 2: Unreal’s Gameplay Tag editor

2.2 Ability System Component
This is the component that allows Actors to use the Ability System.
This component should be present on any actor that either:

• Has Attributes
• Should have or use Gameplay Abilities
• Can be subject to Gameplay Effects

The Ability System Component also handles network replication
of these elements and features several callbacks for responding to
their changes.

2.3 Attributes
Attributes are floating-point numerical values used to represent
anything about an Actor, most commonly things like a character’s
health or movement speed. Attributes have a concept of a base
value versus a current value to represent temporary changes to
them (buffs and debuffs) and come in Attribute Sets. An Ability
System Component can have multiple different Attribute Sets and
Attribute Sets can be added at runtime. Also the Ability System
Component invokes delegates on Attribute change so we can re-
spond accordingly.

2.4 Gameplay Abilities
Gameplay Abilities are what game designers want to make, these
are the actions that characters (or other Actors) can do in the game.
Gameplay Abilities are usually implemented in Blueprint by string-
ing together Ability Tasks. Gameplay Abilities can be granted to
(or removed from) an Ability System Component and can then be
activated either by player input or by other events, they can also
be cancelled before completion.

2.5 Ability Tasks
Ability Tasks are used for any asynchronous step of an Ability, like
playing an animation (and waiting for a specific point in it), moving
an actor or generally waiting for a condition to be met. In Blueprint,
Ability Tasks appear as latent nodes that can resume execution at a
later point in time under specific conditions.



Unreal Engine’s Gameplay Ability System, from programming framework to designer’s tool ,

Figure 3: Example of an Ability Task

2.6 Gameplay Effects
Gameplay Effects represent changes to bemade to anAbility System
Component : modifying Attribute, granting or removing Gameplay
Tags, granting or removing Gameplay Abilities. Gameplay Effects
can be either Instant, Permanent or Duration-based, in the latter
case they either change the Ability System Component temporarily
or at regular interval like in the case of a damage-over-time effect.

2.7 Gameplay Events
Gameplay Events are more or less what the name suggests: they are
data structures that represent activity within the GAS, or whatever
we can think of. They can be used to trigger the activation of
Gameplay Abilities, or be waited for inside a running Ability with
a Wait Gameplay Event Ability Task, and hold data regarding their
Instigator and Target.

Of these concepts, I have found fewer mentions of Gameplay
Events in online sources. I don’t know is this is because Gameplay
Events are a more recent addition to the GAS or because they were
not of interest to the various authors.

3 MORE ABOUT GAMEPLAY EFFECTS
Gameplay Effects are designed to be used as data-only Blueprints,
as such a Gameplay Effect subclass should not hold any behaviour.
The data they hold is rather involved, containing multiple arrays
of complex types, and can contain references to other classes that
provide custom calculations.

3.1 Effect Modifiers
Modifiers are the main mechanism used by Game Effects, they
describe modifications to be made to a target’s Attributes. Modi-
fiers have a lot of options regarding how they are applied such as
how their Magnitude is computed and how this Magnitude affects
the target Attribute: one modifier can be added to the Attribute

while another can be multiplied. The default calculation comes
from Paragon and makes assumptions about how Modifiers should
be combined, for example multiplicative Modifiers are added to-
gether before being multiplied whereas a different game would just
multiply them together.

Figure 4: A Gameplay Effect using an Execution Calculation

3.2 Magnitude Modifier Calculations and
Execution Calculations

These are two options to run custom code when applying and effect.
Magnitude Modifier Calculations are assigned to a modifier and
essentially encapsulate a function that returns a new Magnitude
for the modifier, while Execution Calculations are a property of the
effect itself and essentially generate new Modifiers on the fly.

3.3 Gameplay Effect Specs
Gameplay Effects themselves are not directly applied to their tar-
gets, instead a Gameplay Effect Spec instance is created first. The
Gameplay Effect Spec can be modified before being applied, and can
also be passed around, for example by giving it to a projectile Actor
as a variable. Effect Modifier definition, including fixed Magnitudes,
Magnitude Modifier Calculations and Executions Calculations can-
not be switched in a Gameplay Effect Specs, but we can make use of
dynamic "SetByCaller" values, Gameplay Tags, and multiple Specs
can also be linked together.

4 DESIGN CONSIDERATIONS
The GAS’s architecture can be a bit confusing and feel overcom-
plicated at times, in part because of its nature as a network-ready
framework, in part for its goal of being generic enough to be usable



, Guillaume David

for all kinds of games. As such, there are often multiple ways of
using the GAS to implement each part of a game’s design therefore
each project should establish how they will use it. While the deci-
sions rest on each team’s members, I will investigate a few of the
choices that have to be made.

4.1 What Systems Use GAS?
Gameplay Abilities are just a layer on top of regular Blueprints
so there is no reason anything that is doable with Blueprint could
not be done as an Ability. What should be done that way, though?
Special powers of a game’s characters are the obvious use case,
basic attacks, item use, environment interactions, power-ups, these
are also commonly implemented as Gameplay Abilities. Is basic
movement an Ability? It could be handy if we should have multiple
movement modes. Is clicking a unit to select it an Ability? What
about some AI decision-making code? The game’s UI should re-
spond to Attribute change (e.g. a Health bar), does it trigger with
Gameplay Events?

4.2 Who Owns an Ability System Component?
Let’s consider the very common case of a player’s character switch-
ing weapons, attacking with the weapon would be a Gameplay
Ability, as would other uses of it like reloading or parrying. Does
each weapon Actor come with its own Ability System Component
or does it only grant Abilities to the Character? The Ability System
Component holds Attribute Set so what about the weapon’s state,
things like durability or ammo, are they Attributes of the weapon
itself, Attributes granted to the Character, or just plain variables
on the weapon Actor?

What about non-player Characters? Do they all have their own
Ability System Component? What about inanimate Actors like a
destructible wall with a "health" attribute? What if we have lots of
candidate Actors, maybe performance will become an issue.

4.3 Who Knows about What?
The question boils down to what in the game is a generic mechanics
versus what is a special case. The answers to this question would
be more implementation guidelines than strict rules.

Let’s say we have characters with a Health Attribute, and a
Damage Gameplay Effect that should lower this Attribute. Does the
Effect directly change the Attribute? Then can something without
Health still be damaged? Or does the Attribute Set take care of
applying damage to itself? If so then different Actors can have
different ways of tracking damage done to them. Then what about
Armor or other forms of damage mitigation? If everyone has Armor
then it could be an Attribute and the damage calculation (as decided
above) would account for it, in the case of more exotic form of
damage mitigation, though, Armor could be a Gameplay Ability
that triggers upon receiving a Damage Effect and edits the Game
Effect Spec.

I have seen advice on implementing a stun effect by making
a stunned Gameplay Tag and setting the Gameplay Ability base
class to be blocked if the owner has this tag.[3] In this case all the
Abilities know that being stunned is a possibility, the stun effect
is a generic mechanics of this game. Should every possible status

effect have its own tag and every other relevant part of the game
check for it?

4.4 Triggering Abilities
Gameplay Abilities can be Activated by several means. The most
direct way is to bind input directly to the Ability so that the player
can directly activate it, while this method is simple and may be
suitable for many games, it may lack flexibility for others. The
second way is to call one of the Activate methods, in that way we
can activate and Ability by code whenever we need, and we can
also Activate all Abilities that share a specific tag, allowing us to
group Abilities together.

Gameplay Abilities can also be triggered by the reception of a
Gameplay Event, this way the Event’s Instigator doesn’t need to
know about the Ability for it to be activated. Another way of tying
Ability execution to Gameplay Events is by using an Ability Task
like the built-in Wait Gameplay Event, in this way the Ability stays
activated but is put on hold until the event is received.

Figure 5: The data structure ferried by Gameplay Events

4.5 Sending Gameplay Events
What use does our game make of Gameplay Events? If we are to use
it extensively, if triggered Gameplay Abilities are commonplace for
example, we then have to decide what events are fired and when.

4.5.1 Event Routing and Non-local Triggers. Gameplay Events are
sent to specific Actors, but there may be cases when we want
to trigger an Ability when something happens anywhere. Magic
the Gathering has a lot of cards with "when X happens" triggered



Unreal Engine’s Gameplay Ability System, from programming framework to designer’s tool ,

abilities, and if we already make extensive use of Gameplay Events
it would make sense to use them for things like game statistics (e.g.
how much damage has been dealt in one session), there are several
ways of making sure events get to where they are needed that coule
be implemented by overriding the SendGameplayEvent method in
our game’s GameplayAbility class.

5 WHAT TO EXPOSE
The object of this work is to investigate how the Gameplay Ability
System can be used by a team with varying degrees of technical
familiarity with its workings. Some parts of the GAS can only be
accessed through C++, so naturally a programmer would set it up
for the rest of the team. The overall complexity of the system also
highlight the need to adapt it to our project, so what tools should
we give to the (technical-) game designers, which building blocks
should we provide ready-made and which should be left for them
to design?

5.1 Making new Gameplay Abilities
When a game designer wants an element of the game to be able to
do something, this could be implemented as a Gameplay Ability so
making new Abilities would probably be a common occurrence. As
they are essentially bits of Blueprint code, making a new Gameplay
Ability is actually programming, so different designers will feel
differently about it, but it can also be made to feel less like coding.
One way is to provide custom nodes tailored to our games: Blue-
print Macros, Functions, or Ability Tasks. Another way is to make
reusable GameplayAbility subclasses. A given project will usually
have one such subclass that serve as the basis for all of this game’s
abilities, then additional classes deriving from that one, implement-
ing the most common forms of specific abilities in our game, to
be derived as data-only Blueprints so that the code is completely
reused.

5.2 Making new Gameplay Effects and
Attribute Sets

Making a new Gameplay Effect or Attribute Set would probably
not be needed unless we are implementing a whole new generic
mechanics. It looks fairly easy to make similar effects just different
enough to make debugging difficult so if a game is going to need
lots of them I suggest that Gameplay Effects be semantically distin-
guishable, for example if a game has a Healing mechanics that is
different from Damage then we don’t implement Healing using a
negative Damage effect. Similarly if such a game has mechanically
different Damage sources then two separate Damage Gameplay
Effects would be understandable. However, making a "10 damage"
effect and a "damaged based on Character Strength" effect might
be confusing and increase the risk of errors and bugs. Effects that
are similar can be differentiated by giving different Gameplay Tags
and SetByCaller values to their GameplayEffectSpec.

5.3 Handling Effect Specs
If we are to allow Gameplay Effect Specs to be applied (rather than
Gameplay Effects themselves) after they are properly set up by the
Gameplay Ability or other delivery mechanism, we ought to make
helper functions or Blueprint Macros to make sense of it. As we

would have a limited number of Gameplay Effects, each could come
with a function to make a Gameplay Effect Spec from it with the
right parameters. For instance, creating a Damage Effect Spec could
ask for damage amount and a Damagetype Gameplay Tag.

5.4 Delivering Effect Specs
Gameplay Effect Specs (as well as Gameplay Effect themselves)
can be applied to any Ability System Component from any script,
not just from Gameplay Abilities. In fact, it makes perfect sense
for a Health Pickup in a FPS game to not have an Ability System
Component and just apply a Healing effect to whatever picks it up.
Likewise, a projectile created by a Gameplay Ability would apply
its Damage effect on hitting a suitable target. The GAS also allows
applying Effects to any entity or group of entities represented by a
TargetData structure.

We should establish guidelines regarding Gameplay Effect de-
livery from Gameplay Abilities, especially for those mediated by a
spawned Actor like our projectile above. Maybe the Actor delivers
the effect itself in a script, or maybe it passes its target back to
the Ability, either via TargetData or via a direct reference. Barring
more complex multi-effect Abilities, there should be few (ideally
one) well identified, places to look for Effect delivery logic.

5.5 Spawning Actors Through Gameplay
Abilities

Gameplay Abilities can use Spawn Actor Ability Task, however
the Ability can’t track what happens to that actor afterwards. If
the Actor is a delivery system for a Game Effect Spec then the
Gameplay Ability could still be responsible for making said Spec,
the Actor class would then have a Gameplay Ability Spec public
variable so that it could be "loaded" on spawn, this is the way used
in Epic’s Action RPG example project [2]. Alternatively, the Actor
could send Gameplay Events that the Ability would wait for, or we
could create a new Ability Task that has output execution pins for
when the Actor does something like OnBeginOverlap.

Figure 6: A proposed Fire Projectile Ability TaskwithOnHit
output delegate



, Guillaume David

5.6 Ability Tasks
Ability Tasks can only be written in C++, so making new ones
should arise from the designer’s needs and what conventions have
been settled upon. To continue on the question of spawning Actors,
maybe the team has decided that using the Spawn Actor Task is
good enough, or maybe we think that it would be better to have a
more specialised Fire Projectile Task.

5.7 Events and Triggered Abilities
If our game makes heavy use of triggered abilities, we will have to
ensure that corresponding Gameplay Events are sent accordingly.
In most cases, Ability designers should be concerned with receiving
Gameplay Events, not with sending them. Indeed any "listenable"
event (lowercase ’e’) should implicitly send Gameplay Events to
whomever it may concern. This can be achieved by plugging into
the many delegates that are already defined in the various GAS
classes, or by overriding methods of these classes. In addition to
specifying which Game Events should be fired when, we have to
convene about which Gameplay Tag (singular) they will carry as
these tags are used as keys in the Ability triggering process.

5.8 Adding and Editing Gameplay Tags
Gameplay Tags can be used for much more than identifying Ability-
triggering Gameplay Events: by default in the GAS they can govern
things like Ability Activation and Cancellation, Gameplay Effect
conditional application (required on the source or target of an Ef-
fect), Effect immunity, ... and they can of course be used in many
other creative ways. The hierarchical nature of Gameplay Tags
allows us to classify them in categories and subcategories so each
project would likely have its own Tag nomenclature. Some cate-
gories could contain a more or less fixed list of tags and the creation
of new categories should maybe be limited, for that matter the
Unreal Editor allows the restriction of some parts of the Gameplay
Tag hierarchy, showing a warning asking if you have permission
from the Lead Designer (or whatever role of you set as owner of
the category) before editing tags. [5]

5.9 Emergent Behaviour Through Ability
Combination

In the case of a complex game we may want to allow Abilities
or Effects to interact with each other in order to create emergent
combinations. If the game is supposed to evolve a lot, a given Ability
or Effect doesn’t have to know how and by what it can be modified
so we don’t end up with tons of special cases that may or may not
be relevant in the end product. This is a reason for my previous
suggestions: properly set up Gameplay Events allow Abilities to be
trigger when, say, damage is just about to be dealt and that damage
is a Gameplay Effect Spec that can then be modified by the triggered
Ability. If our game designers are a bit too fond of such interactions,
though, we are likely to hit a point where these guidelines are
not enough, and we would have to either implement their ideas as
special cases or maybe build new subsystems to accommodate them.
Such a case that I can foresee is if an ability should add behaviour
to a spawned actor, like changing all projectiles to not be destroyed
on impact and instead bounce towards an additional target.

6 IMPLEMENTATION SPECULATIONS
In this section I will look at a few Abilities and how I would consider
implementing them using the Gameplay Ability System in different
contexts. I will use examples fromwell-known games and will try to
consider different scenarios regarding project-wide architecture and
design decisions. These are all game mechanics that I kept in mind
while gaining an understanding of the GAS and its capabilities.

6.1 Quake’s Quad Damage
The effect of this power-up is simple: anytime you would deal
damage, you deal four times as much instead. Critical hits in a RPG
would be very similar, with an element of chance added.

6.1.1 Damage Attribute. In a game with a restrained set of abil-
ities such as a Quake clone, switching weapons could change a
Damage Attribute on the player’s Character. In that case the Quad
Damage pickup is very simple: it applies a timed Effect with a
fixed 4-magnitude multiplicative Modifier on the player’s Damage
Attribute.

6.1.2 GameEffectSpecManipulation. In caseswhere damage amount
is not tied to an explicit character Attribute, the pickup’s effect can
instead give a Gameplay Ability that would be triggered each time
a Damage Effect Spec is created and alter it.

6.2 Damage Mitigation
The opposite of the previous mechanics: how do we lower the
amount of damage dealt to you?

6.2.1 Attribute Based. In League of Legends for instance, every
damageable entity has Armor. In that case the damage calculation,
be it an Effect MagnitudeModifier Calculation or Execution Calcula-
tion, or done on the receiver with a Damage Received Attribute, can
take care of applying whatever mitigation formula is appropriate.

6.2.2 Effect Spec Manipulation. If it doesn’t make sense to have
such an Attribute, or if we want to grant an entity some exotic
damage mitigation mechanics, we can still use triggered Ability to
modify the Effect Spec when you should receive damage.

6.3 Penetrating Damage Mitigation
In League of Legends Armor Penetration, though not as ubiquitous
as Armor, is also a stat a character has, so it would make sense to
have it taken into account by the damage calculation. In a game
in which these are not Attributes, though, we hit a point where
we have to choose how we bypass the limitations of the GAS: we
can’t apply Effects to Effect Specs, modifying an Effect Spec is not
an Effect in itself, ... Also, while we’re at it, in addition to Armor
and Armor Penetration we could imagine Hardened Armor that
counters Penetration, and super-penetrating damage that would
counter Hardened Armor, and so on. While the rabbit hole has to
end somewhere, we have to consider how far we could go down it,
theoretically and practically.

6.3.1 Treat it as a Special Case. This rabbit hole ends right here
and not any deeper, Alice. Penetration, or Hardening, is the final
depth of this otherwise potentially endless stack of modifiers, and
each of these effects know about those that can counter it. We use



Unreal Engine’s Gameplay Ability System, from programming framework to designer’s tool ,

Attributes for their parameters and its fine because there’s only a
couple of them.

6.3.2 Build a new Subsystem. If modifying Effect Specs on the fly
is a common occurrence, we might want to build a class to reify
those changes, some kind of Effect Spec Upon Effect Spec, that can
stack or alter each other. We should make sure that the project
really needs it, and beware of digging ourselves into another rabbit
hole by re-making a GAS inside the GAS.

6.3.3 Subvert the GAS. Or maybe we could extend Gameplay Ef-
fects and use them for more things that they are intended to, so that
modifying an Effect Spec is done via applying Gameplay Effects.
We could also have Abilities each give custom Attribute Sets to
their instigators and targets. Again beware of the slippery slope,
what if Character movement was done through Gameplay Effects
as well...

6.4 League of Legend’s Luden Items
Luden’s Tempest (and its variants and predecessors) grand a player’s
Character a new passive ability that can be roughly described as:

When one of your abilities deals magic damage, fires
a few projectiles to new different targets.

This is a clear-cut case of a triggered Ability. In order to implement
such an Ability in our game, we should send "I just dealt damage"
Gameplay Events to characters, these Events would trigger the

Ability that would then filter based on type of damage dealt and
spawn the new projectiles.

7 CONCLUSION
I had not ever heard of the Gameplay Ability System when I set out
to investigate the idea of using Blueprint to create character abilities.
While at first it seemed to me that the GAS was not designed to do
what I envisioned, I came to realize that it is more than powerful
enough for anything I can think of given only a few adjustments
and ensuring that the team adheres to some guidelines. Now that
I have a better grasp of the GAS’s architecture and capabilities, I
look forward to using it in a team environment and I hope I will be
able to do so during next semester’s project.

REFERENCES
[1] Thomas Blair. [n.d.]. Crowfall - Crowfall Live! Building Myrmidon Powers. https:

//youtu.be/ojOPgctlxCk
[2] Epic. [n.d.]. Unreal Engine Documentation: Action RPG Game. https://docs.

unrealengine.com/4.26/en-US/Resources/SampleGames/ARPG/
[3] Epic. [n.d.]. Unreal Engine Documentation: Gameplay Abilities. https://docs.

unrealengine.com/4.26/en-US/InteractiveExperiences/GameplayAbilitySystem/
GameplayAbility/

[4] Epic. [n.d.]. Unreal Engine Documentation: Gameplay Ability System. https://docs.
unrealengine.com/4.26/en-US/InteractiveExperiences/GameplayAbilitySystem/

[5] Epic. [n.d.]. Unreal Engine Documentation: Gameplay Tags. https://docs.
unrealengine.com/4.26/en-US/ProgrammingAndScripting/Tags/

[6] Dan Kestranek. [n.d.]. GASDocumentation. https://github.com/tranek/
GASDocumentation

[7] KJZ. [n.d.]. Unreal CommunityWiki: Gameplay Abilities and You. https://unreal.gg-
labs.com/wiki-archives/networking/gameplay-abilities-and-you

https://youtu.be/ojOPgctlxCk
https://youtu.be/ojOPgctlxCk
https://docs.unrealengine.com/4.26/en-US/Resources/SampleGames/ARPG/
https://docs.unrealengine.com/4.26/en-US/Resources/SampleGames/ARPG/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/GameplayAbilitySystem/GameplayAbility/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/GameplayAbilitySystem/GameplayAbility/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/GameplayAbilitySystem/GameplayAbility/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/GameplayAbilitySystem/
https://docs.unrealengine.com/4.26/en-US/InteractiveExperiences/GameplayAbilitySystem/
https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/Tags/
https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/Tags/
https://github.com/tranek/GASDocumentation
https://github.com/tranek/GASDocumentation
https://unreal.gg-labs.com/wiki-archives/networking/gameplay-abilities-and-you
https://unreal.gg-labs.com/wiki-archives/networking/gameplay-abilities-and-you

	Abstract
	1 Introduction
	1.1 For Whom: Relevant Team Roles
	1.2 For What: Game Genres and Use Cases

	2 GAS Basics
	2.1 Gameplay Tags
	2.2 Ability System Component
	2.3 Attributes
	2.4 Gameplay Abilities
	2.5 Ability Tasks
	2.6 Gameplay Effects
	2.7 Gameplay Events

	3 More about Gameplay Effects
	3.1 Effect Modifiers
	3.2 Magnitude Modifier Calculations and Execution Calculations
	3.3 Gameplay Effect Specs

	4 Design Considerations
	4.1 What Systems Use GAS?
	4.2 Who Owns an Ability System Component?
	4.3 Who Knows about What?
	4.4 Triggering Abilities
	4.5 Sending Gameplay Events

	5 What to Expose
	5.1 Making new Gameplay Abilities
	5.2 Making new Gameplay Effects and Attribute Sets
	5.3 Handling Effect Specs
	5.4 Delivering Effect Specs
	5.5 Spawning Actors Through Gameplay Abilities
	5.6 Ability Tasks
	5.7 Events and Triggered Abilities
	5.8 Adding and Editing Gameplay Tags
	5.9 Emergent Behaviour Through Ability Combination

	6 Implementation Speculations
	6.1 Quake's Quad Damage
	6.2 Damage Mitigation
	6.3 Penetrating Damage Mitigation
	6.4 League of Legend's Luden Items

	7 Conclusion
	References

